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Abstract. The structure of a polymer chain, with excluded-volume interaction and residing 
in a fractal space, is determined using the Edwards path integral formulation of the 
calculation of the configuration Green function. To implement this calculation the position- 
dependent diffusion constant of O’Shaughnessy and Procaccia, appropriate to diffusion 
on a fractal, is employed in place of the usual V2. The scaling of R with N and the 
monomer density at large I d R are determined. The results, R - N‘, v = 3/(d,+ d,) are 
in agreement with a simple Flory argument and confirm the essential correctness of the 
O’Shaughnessy-Procaccia continuum description of diffusion on a fractal for r d R. 

1. Introduction 

In recent years there have been numerous studies of fractal objects and the influence 
of fractal geometry on dynamics, e.g. the diffusion of a tracer particle in a fractal pore 
space obeys (x’) - t 2 ’ d w .  Let us ask the question: what is the structure of a polymer 
that is required to reside in a fractal space? The various possible monomer arrangements 
of an N-unit (monomer) polymer in a fractal space are equivalent to the possible 
random walks that can occur in this space on a timescale t K  N [l]. The excluded- 
volume interaction between the monomers of which the polymer is built limits the 
possible monomer arrangements to those that are self-avoiding. Thus the question we 
have posed translates into the question of determining the structure of self-avoiding 
random walks on a fractal. To answer this question we start with the traditional path 
integral description of polymer configurations due to Edwards [l]. Essential to our 
application of this description is modification of the behaviour of the entropy springs 
appropriate to random walking on a fractal. Calculation using this modification, 
involving the O’Shaughnessy-Procaccia [ 2 ]  position-dependent diffusion constant and 
a variant of the usual computational procedure, leads to results that are in accord with 
a simple Flory argument. Herein we describe these calculations. 

This paper is organised as follows. In § 2 we outline the connection between the 
path integral formulation of the problem and the equations that we manipulate to 
learn about polymer structure. We use the steepest descent method of Kholodenko 
[3] to derive self-consistent equations for G( r, r’; N ) ,  the Green function that describes 
polymer configurations. These equations are cast in the form of a single equation for 
the self-consistent field, 4 ( r ) ,  from which features of the polymer structure can be 
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learned. The equation for 4 ( r )  is treated using a factorisation approximation due to 
Wigner and Kirkwood [4]. In § 3 we employ the formal apparatus displayed in 0 2 to 
solve two problems. First we look at a polymer with excluded-volume interaction in 
a uniform d = 3 space, finding well known results. Thus we confirm, for a known case, 
the computational apparatus we have introduced. Then we look at a polymer with 
excluded-volume interaction in a fractal space. We work out the scaling of polymer 
size with monomer number, R - N u ,  v = 3 / ( d f +  d w ) ,  and we determine the monomer 
density in the polymer at 1 << r 6 R, where 1 is the monomer length scale. Our conclusions 
are in § 4. 

2. Method of calculation: general 

In this section we sketch the formulation of the description of a single polymer chain 
that we employ in 5 3 .  To find the end-to-end distance of a polymer chain of length 
N we study G ( r ,  r’;  N ) ,  a measure of the number of configurations available to a 
chain of this length that has one end fixed at r’ and the other end fixed at r. G ( r ,  r’;  N )  
is given by 

x ( N ) = r  

G ( r ,  r’; N )  = 1 D[x(s)l exp{-H[x(s)lI (1) 
x ( O ) = r ’  

where D[x(s)]  denotes a functional integral over all configurations x(s) of the chain 
x(0) = r‘, x( N )  = r and H[x(s)]  is an appropriate weight function. For H[x(s)]  we 
consider 

~ [ x  11 = JON ds (E) * + w JON ds JON ds’ a (x( s) - x( s ‘)) 

where the first term is an ‘energy’ associated with the random walk (RW) of the chain 
in a uniform space and the second term is the excluded-volume interaction with strength 
parameter W [ 11. The ‘energy’ in ( 2 )  is that for a self-avoiding walk (SAW) in a uniform 
space. 

The quantity we wish to study, the average end-to-end distance, is related to 
G ( r ,  r’; N )  by 

5 ddr( r)’G( r, 0; N )  
ddr G (  r, 0; N )  

R*( N )  := ‘ (3) 

Of particular interest is the scaling of R 2  with N, i.e. the determination of the Flory 
exponent, v, defined by 

R2(  N) - N”. (4) 
Thus the programme of calculation is in principle: solve (1) with (2), for use in (3) to 
examine (4). 

The first step in carrying out this programme is to find an equation of motion for 
G ( r ,  r’; N ) .  To this end we use the steepest descent approximation of Kholodenko 
[3]. The outline is as follows. 

( a )  Introduce a random field, +(x), so that the excluded-volume interaction appears 
as a single-particle term. That is, use the Hubbard-Stratonovich identity to write 
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where 

P ($ )=exp  - dz ~ ~ ’ $ ( Z ) W - ’ ( Z - Z ’ ) ~ ( Z ‘ )  ( I  I 
and 

A-’ = I D[$(z)IP($). 

( b )  Find an equation of motion for G (  r, r’;  N 1 $). As illustrated in Freed [ 5 ] :  

( 9 )  

( L - - + i $ ( r ) ) G ( r ,  a2 r’; NI$) = 6 ( i V ) a ( r - r ’ ) .  
aN ar2  

( c )  Develop a self-consistent equation for G ( r ,  r’;  N I $ ) .  This is accomplished 
most conveniently in terms of the Laplace transform of G ( r ,  r ’ ;  NI 4) .  The Laplace 
transforms of (5) and (10)  are 

G ( r ,  r‘; s) = A D [ $ I P ( $ ) G ( r ,  r ’ ;  s I $ )  (11)  I 
and 

( s - - $ + i $ ( r )  1 G ( r , r ’ ; s I $ ) = a ( r - r ’ )  (12)  

where the Laplace transform is 

f( s) := Iox d N  e-””f( N ) .  

Approximating the integrand in (11) by &(x), the mean-field function found by a 
steepest descent analysis of P( I,!J) G( r, r’;  s 1 $), leads to the self-consistent equations 

(13)  (s -$+i W $ ( r )  G ( r ,  r’;  si+) = 6 ( r  - r ’ )  

and 
i $ ( r , s ) = G ( r , r ; s l $ ) = 4 ( r ; s ) .  

It is this pair of self-consistent equations that we shall employ in finding G ( r ,  r’;  N ) ,  
etc. 

Self-consistent equations, identical to those we have displayed, can be found in a 
perturbation theory treatment of (1 1 )  (see figure 1) in which the perturbation series is 
summed in a Hartree-like manner, figure l ( b ) .  As observed by Moore and Bray [ 6 ]  
it is the loop contribution in figure l ( b )  that is the source of the effective potential, $, 
in (13) .  
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+ [ b )  - -  - 

Figure 1. ( a )  Perturbation series for G(r,  r ’ ;  N ) ,  double line, in terms of Go and W. Go 
is a single line; W acts at the vertices. ( b )  Resummations of the series in ( a )  in the Hartree 
approximation. 

In dealing with (13) ,  following an argument by Moore and Bray, we use the isotropic 
form of a21ar2 and write: 

6(r-r’)  
s -T-- -+ Wqb( r; s )  G (  r, r‘; s I 4) = ~ 

ar r ar  rr ’ 

and 

4 (  r; s )  = G (  r, r; s I (CI). (16) 

Physically this is equivalent to approximating the polymer as a diffused sphere, whose 
radius is to be determined self-consistently. This corresponds to taking only the I = 0 
mode ( S  wave) into consideration and was shown by Moore and Bray to be valid in 
the strong-coupling region, for it is here that the centrifugal barrier can be set equal 
to zero. 

We may solve (15) formally for G (  r, r’; s 14) in the form 

dA(r(exp[-h(s-D?+ W4)lIr‘) (17) 

where 

6(  r - r‘) 
( r / r’) = - . D2=-+-- d2 2 d 

dr2 r d r  rr‘ 

Upon putting r = r’ in this equation we have a self-consistent equation for +(r ;  s), 
equation (16): 

+( r; s) = joe dA(rlexp[-A(s i- W4 - Df)]/r) .  

To make progress in handling the RHS of (19) we employ the Wigner-Kirkwood [4] 
factorisation of and write 

+(r, s)-IomdA exp[-A(s+ W4)]K(r, r; A )  (20) 

where 

K(r,  r‘; A )  =(rlexp(ADS)lr’). (21) 
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The strategy at the start was to solve an equation for G ( r ,  r’; N) to obtain R 2 ( N )  
as in (3). The equation for G ( r ,  r‘; N )  was reduced, upon approximation, to a 
self-consistent equation, the self-consistency involving the diagonal part of G( r, r’;  s), 
4 ( r ;  s). Equations (20) and (21) are a statement of this self-consistency. From them 
we obtain first 4 ( r ;  s) and then G ( r ,  r‘; s 14), equation (15) and then R 2 ( N )  from (3). 
Instead of proceeding in this way we may use + ( r ;  s) directly to obtain R2( N )  upon 
recalling that 4 ( r )  is the monomer density and using [7]: 

loR r d - *  d r + ( r )  = N. (22) 

Thus the original computational programme, outlined below (4), has been transfor- 
med into the self-consistent solution to (20) and (21) for 4 ( r )  to be used in (22). 
Below we will show how this scheme works by using it to describe a polymer with 
excluded volume (SAW) in a uniform d = 3 space. We will then use it to describe a 
polymer with excluded volume (SAW) in a fractal space. This latter application, 
involving a modification of the structure of the space in which the polymer resides, is 
implemented directly in (20)-(22). 

3. Method of calculation: specific 

In this section we describe the use of (20)-(22) to study R 2  for a polymer in a uniform 
d = 3 space (§ 3.1) and a fractal space (§ 3.2). 

3.1. Polymer in a uniform d = 3  space 

To solve (20) and (21) self-consistently for 4 ( r )  we begin with (21) for K ( r ,  r’; A ) .  
From (21) we have 

( & - D i ) K ( r ,  r’; A)=6(A)- s ( r - r ‘ )  
rr’ 

i.e. K ( r ,  r ‘ ;  A )  solves the diffusion equation. Thus using D? from (18) we have 

exp[(-r:+ 
1 1 

K ( r ,  r ‘ ;  A )  =- 
2A (r<r,)”* 

where r ,  := max( r, r ’ ) ,  r< := min( r, r ’ )  and I is the modified Bessel function. For r = r‘ 
at large r we have 

K ( r ,  r ;  A ) - 6 / r 2 .  

Upon using this asymptotic form for K ( r ,  r, A )  in the RHS of (20) we obtain 

1 
‘ ( ‘ 9  ’)- r2(s + w+(r, s) ) ’ /2*  

In the limit W+ >> s this equation is solved for 4(  r ) :  

+ ( r )  - r-4’3. 

Using this asymptotic form of 4 in (22) we find 
N - R5I3 
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or U = $ ,  i.e. the well known Flory result. The procedure illustrated here may be 
generalised to integer dimension with the result v = 3 / ( d  + 2). 

Before we go on, several remarks are in order. 
( a )  To find N -  R5’3 we have used (22), i.e. 

1 
N - joR I d - ’  7 dr  - R d - r .  (29) 

Because of the excluded-volume interaction the polymer generates an effective potential 
that reduces its density below uniformity, Fr,  and as a consequence the number of 
monomers in the interior of the polymer, at r d  R, goes as R“-’”. In using 4 ( r )  as we 
have in (29) we require a form + ( r )  valid at r d  R. Making the association of s with 
N-’ we see that the inequality below (26) becomes r4i3 cc N - R5I3 or r d R. Thus the 
limit W 4  >> s which we have used in (26) is the correct limit in which to glean information 
about 4 ( r )  in the interior of the polymer. 

( b )  In dealing with the self-consistent equations, (15) and (16), we seem to have 
made things harder by using the inverse formula in (17). Then, by using the Wigner- 
Kirkwood factorisation to achieve (20) we seem to have taken a compensating step. 
Equations (20) and (21) permit us to achieve the same results as those achieved by 
Moore and Bray [6] in examination of (15) and (16). Whereas Moore and Bray have 
to work out the joint consequence of -OS+ W 4 ( r ) ,  i.e. they solve the differential 
equation involving this operator, we need only work out the consequence of 0:. 
However, in contrast to Moore and Bray who set s = 0 at the outset, we must obtain 
0: for all A, i.e. solve an equation involving exp(AD:) for all A. As A acts like N (23) 
we can say that the method of solving the equation for G(r, r’;  s 16) introduced, 
substitutes knowledge of the motion of a free chain for all N for knowledge of an 
interacting chain at a particular N. 

3.2. Polymer in a fractal space 

Consider a polymer in the pore space of a porous material. The polymer is so large 
that it achieves an equilibrium configuration by wending its way among a great number 
of pores. Let us take the pore space to be fractal with dimension d f .  As a consequence 
of its fractal structure the diffusion of a test particle in the pore space will be anomalous 
and characterised by the dimension of the walk, d,: 

(x’) - t 2 I d w .  (30)  
Since the random walk of the monomers through the pore space is analogous to the 
random walk of the test particle, we may expect the equilibrium configuration of the 
polymer to show evidence of d,  as well as df. 

There are two modifications of (20)-(22) that are necessary to deal with this case. 
( a )  To describe the random walk of the monomers in the fractal pore space we 

use the position-dependent diffusion constant of O’Shaughnessy and Procaccia [2] for 
D: (21): 

where 9 = d ,  - 2 .  The underlying fractal space, of course, cannot be viewed as an 
isotropic medium on a microscopic scale. However, on a ‘coarse-grained’ scale, we 
may take the position-dependent diffusion constant as a working hypothesis, a practice 
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commonly 
conclusion 

( b )  To 

adopted in problems concerning porous media. It will be shown in the 
that the hypothesis is essentially an accurate one. 
describe the density of the pore space in which the polymer resides we use 

p ( r) - (32) 

K(r,  r'; A )  = (rlexp(AD:,fJr') 

Thus (20) is unchanged; in place of (21) and (22) we have 

(33) 

and 

From (32) and (33) we find 

This equation has a solution 

where 

y = l + i 8  (37) 

P = a / y .  

K(r,  r ;  A ) - f i / r y - 2 a .  (38) 

Proceeding as in § 3.1 we find the large-r behaviour of K(r ,  r; A ) :  

Thus 

and 

R - N "  (40) 

with p = (2df- d,)/3 and Y = 3/( df+ d,). Equations (39) and (40) are our principal 
results. 

As expected for d, = d and d, = 2, we recover the Flory result. Equation (40) can 
also be achieved using an analysis of D:,,+ Wd(r)  along the lines of that of Moore 
and Bray [ 6 ] .  Further, (40) is in agreement with a simple Flory argument [7] using 
the energy 

Minimisation with respect to R leads to RdwtdcK N 3 .  
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4. Conclusion 

In this paper we have studied some features of the structure of a self-avoiding polymer 
chain that resides in a fractal space. This study has been carried out employing a 
variation on the usual computational procedure. Here we summarise our findings and 
call attention to a number of interesting results. 

(i) The ‘variation on the usual computational procedure’ was tested on self-avoiding 
polymer chains in a uniform space of integer dimension with the results R - N“, 
v = 3/(d + 2), i.e. the correct Flory exponent. 

(ii) Application of this computational procedure to a self-avoiding polymer chain 
in a fractal space characterised by df and d, led to 

R - N ”  v = 3/( d,+ d , )  (40) 

and to monomer density 

+( r)  -- r-” I-L = (2df- dw)/3 (39) 

for large r s  R. 
These results, equations (39) and (40), are consistent with treatment of the problem 

by the computational procedure of Moore and Bray [6] and, in the case of (40), with 
a simple Flory argument [7]. They are also consistent with the earlier results of Rammal 
eta1 [8] and Ben-Avraham and Havlin [9]. In achieving these results we have used 
the O’Shaughnessy-Procaccia [2] position-dependent diffusion constant, i.e. 

D( r)  - r - @  

where 8 = d,-2, or equation (31). Thus the agreement between (40) and the simple 
Flory argument, achieved using (31), lends support to an assertion about the suitability 
of the O’Shaughnessy-Procaccia continuum description of particle motion on a fractal 

How general are the results in (39) and (40)? The calculation called for upon using 
(31) and (32), the determination of K(r ,  r’; A )  using (35), fails at d, = 2 df/d,< 1 where 
p < 0 and (b ( r )  - r’&’. On physical grounds we expect a more severe limit. Equations 
(39) and (40) should cross over at d, = 2 to v = d ; ’ ,  = O .  The argument for this 
comes from d, = df+ w, where w describes the scaling of R, R = L”. w < 0 implies the 
availability, to a random walker, of alternate paths that let it revisit regions of space 
where it has been previously. Thus, when limited by the requirements of self-avoidance, 
a random walker is not compelled to simply walk forward as it is, for example, in the 
case of a hierarchical lattice; for a hierarchical lattice df = 1.262, w = 0.834, d, = 2.096 
and d, = 1.204. 

[lo]?. 
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+ T h e  treatment of diffusion on a fractal due to O’Shaughnessy and Procaccia yields a Green function 
different from that of Guyer [lo]. The Green function of Guyer, valid for r2  >> N2‘d*, is not appropriate 
for our calculation, in which r 4 N is important. 



Polymer in a fractal pore space 

References 

[ I ]  Edwards S F 1965 Proc. Phys. Soc. 93 605 
[2] O’Shaughnessey B and Procaccia I 1985 Phys. Rev. Left. 54 455 
[3] Kholodenko A L unpublished 
[4] Feynman R P 1972 Sraristical Mechanics (New York: Benjamin) 
[5] Freed K 1970 J.  Chem. Phys. 55 3910 
[6] Moore M A and Bray A J 1978 J.  Phys. A: Mafh .  Gen. 11 1353 
[7] de Gennes P G 1969 Rep. Prog. Phys. 32 197 
[8] Rammal R, Toulouse G and Vannimenus J 1984 J.  Physique 45 389 
[9] Ben-Avraham D and Havlin S 1984 Phys. Reu. A 29 2309 

[ lo]  Guyer R A 1985 Phys. Rez;. A 32 2324 

4181 


